THE CHARACTERIZATION OF THE CLOSED *n*-CELL*

ву

D. W. WOODARD

1. Introduction. Various characterizations of the closed 1-cell and of the closed 2-cell have been given. But, with the exception of a paper by Alexandroff, \dagger there is no record of previous attempts to give a characterization of the closed n-cell which is uniformly valid for all values of n > 0.

Characteristic of the present work are (1) the use of the notion of *strong homeomorphism* (§2) by means of which is defined a very useful concept, that of *the descendant of a set*, and (2) the emphasis placed upon an essential property of the closed n-cell as given in Corollary, Theorem P_1 (§3).

In Theorem I (§4) there is presented a characterization of the closed n-cell without reference to the euclidean spaces. The definition of the closed n-cell implied by this theorem, although given by means of recursive statements, is essentially set-theoretic in character. The words and symbols constituting this theorem may be regarded as defining a function of n, F(n), such that if k is a positive integer, F(k) is a closed k-cell. The space F(n) is defined in terms of certain of its subsets as given by F(n-1). By definition, F(0) consists of a single point.

The proof of Theorem I is based upon Theorem I' (§4). This latter theorem gives a characterization of the closed n-cell in terms of the closed (n-1)-cell.

2. Definitions. The set $\overline{M} - M$, where \overline{M} designates the closure of the set M, is called the λ -set of M and is denoted by $\lambda[M]$.

A set M_1 is said to be *strongly homeomorphic* with a set M_2 provided there exists a homeomorphism, $H(\overline{M_1}) = \overline{M_2}$, of such nature that $H(M_1) = M_2$.

Let P be a non-vacuous subset of a set M such that $M-P=M_1+M_2$, $\overline{M}_1 \cdot \overline{M}_2 = \overline{P}$ and M_i , i=1, 2, is strongly homeomorphic with M. Each of the sets M_i is called a *proper descendant* of M. This relation is expressed symbolically: $M_i = D_i^P(M)$. The set P is said to generate the descendants. The

^{*} Presented to the Society, June 20, 1934 under the title *Uniform set-theoretic characterizations* for closed n-cells; received by the editors July 29, 1936.

[†] P. Alexandroff, Zur Begründung der n-dimensionalen mengentheoretischen Topologie, Mathematische Annalen, vol. 94, p. 296.

[‡] The use of the expression "strongly homeomorphic" in this connection was suggested to the author by Professor J. R. Kline.

complex whose elements are the descendants of M generated by P is represented by $\Delta[P]M$.

 $\Delta[P]M = (D_1^P(M), D_2^P(M)).$

A set P is said to generate *improper descendants* for a set M as follows:

- (1) $P \neq 0$, $M \neq 0$, but P does not generate proper descendants for M: $D_i^P(M) = 0$, i = 1, 2; $\Delta[P]M = (0, 0)$.
 - (2) P = 0: $D_i^P(M) = M$, i = 1, 2; $\Delta[P]M = (M, M)$.
 - (3) M = 0: $D_i^P(M) = 0$, i = 1, 2; $\Delta[P]M = (0, 0)$.

We define two additional complexes:

$$\Delta[P](M_1, M_2, \cdots, M_n) = (D_1^P(M_1), D_2^P(M_1), \cdots, D_1^P(M_n), D_2^P(M_n)),$$

$${\mathop \Delta \limits_{i = 1}^n \left[{{P_i}} \right]} M \, = \, \Delta \left[{{P_1}} \right] {\left({\mathop \Delta \limits_{i = 2}^n \left[{{P_i}} \right]} M} \right).$$

That the complex $\Delta_{i=1}^{n}[P_i]M$ contains at least one non-vacuous element is indicated as follows: $\Delta_{i=1}^{n}[P_i]M \neq 0$. It is to be noted that, if $P_i = 0$ for every value of i, every element of $\Delta_{i=1}^{n}[P_i]M$ is identical with M.

It will be of advantage to extend the notion of a descendant of a set and speak of every descendant, proper or improper, of a descendant of a set M as a descendant of M. When there is no doubt as to the identity of the set which generates a given descendant, the symbol for the generating set will be omitted. Frequently multiple subscripts will be used in denoting descendants, as in $D_{12}(M)$. In such cases the meaning will be clear from the context.

An n-cell, n > 0, is a subset of a space S which is strongly homeomorphic with the set in euclidean n-space which is the interior of the (n-1)-sphere whose equation is $\sum_{i=1}^{n} x_i^2 = 1$. A 0-cell is a set consisting of a single point.

3. Preliminary Theorems. We prove first

THEOREM P₁. Let C^n and K^n be two n-cells, n>0. If there is a homeomorphism, $H_1(\lambda[C^n])=\lambda[K^n]$, there exists a homeomorphism, $H_2(\overline{C^n})=\overline{K^n}$, such that $H_2(\lambda[C^n])=H_1(\lambda[C^n])$.

In view of the definition of the n-cell (§2), K^n may be taken to be the set in euclidean n-space which is the interior of the (n-1)-sphere whose equation is $\sum_{i=1}^n x_i^2 = 1$. Since C^n is strongly homeomorphic with K^n , there is a homeomorphism, $H_{\alpha}(\overline{C^n}) = \overline{K^n}$, such that $H_{\alpha}(\lambda[C^n]) = \lambda[K^n]$. Denote by O the point $(0, 0, \dots, 0)$ in euclidean n-space. Let p be any point of $\lambda[C^n]$, $H_1(p) = q$ and $H_{\alpha}(p) = q'$. Let Oq and Oq' be the straight line intervals in $\overline{K^n}$ joining O to q and q' respectively. Make the points of Oq and Oq' to correspond in such a manner that a point q_1 of Oq corresponds to a point q_1' of Oq' if, and only if, $d(O, q_1) = d(O, q_1')$.*

^{*} If p and q are two points, the symbol d(p, q) is used to designate the distance from p to q.

Since p is any point of $\lambda[C^n]$, this procedure results in a transformation of $\overline{K^n}$ into itself which is a homeomorphism. If $H_{\beta}(\overline{K^n}) = \overline{K^n}$ is this transformation, $H_{\beta}(q_1) = q_1'$. Let H_2 denote the transformation $H_{\beta}^{-1}H_{\alpha}$. Then H_2 is a homeomorphism. $H_2(\overline{C^n}) = \overline{K^n}$. Since $H_2(p) = H_{\beta}^{-1}H_{\alpha}(p) = H_{\beta}^{-1}(q') = q$, $H_2(\lambda[C^n]) = H_1(\lambda[C^n])$.

COROLLARY. If C^n is an n-cell and if there is a homeomorphism, $H_1(\lambda[C^n]) = \lambda[C^n]$, there exists a homeomorphism, $H_2(\overline{C^n}) = \overline{C^n}$, such that $H_2(\lambda[C^n]) = H_1(\lambda[C^n])$.

THEOREM P₂. Let S_1^n and S_2 be two topological n-spheres such that $S_i^n = \overline{C_{i1}^n} + \overline{C_{i2}^n}$, $\overline{C_{i1}^n} \cdot \overline{C_{i2}^n} = \lambda \left[C_{i1}^n \right] = \lambda \left[C_{i2}^n \right]$, i = 1, 2, and C_{ij}^n is an n-cell. Then there exists a homeomorphism, $H(S_1^n) = S_2^n$, such that $H(\overline{C_{1i}^n}) = \overline{C_{2i}^n}$, i = 1, 2.

 C_{11}^n is strongly homeomorphic with C_{21}^n . There is a homeomorphism $H_1(\overline{C_{11}^n}) = \overline{C_{21}^n}$, such that $H_1(\lambda[C_{11}^n]) = \lambda[C_{21}^n]$. But $\lambda[C_{i1}^n] = \lambda[C_{i2}^n]$, i = 1, 2. Then $H_1(\lambda[C_{11}^n]) = H_1(\lambda[C_{12}^n]) = \lambda[C_{22}^n]$. By Theorem P₁ there is a homeomorphism, $H_2(\overline{C_{12}^n}) = \overline{C_{22}^n}$ such that $H_2(\lambda[C_{12}^n]) = H_1(\lambda[C_{12}^n])$. The existence of the required transformation is evident.

COROLLARY. If S^n is an n-sphere, $S^n = \overline{C_{11}^n} + \overline{C_{12}^n} = \overline{C_{21}^n} + \overline{C_{22}^n}$ and $\overline{C_{i1}^n} \cdot \overline{C_{i22}^n} = \lambda \left[C_{i1}^n \right] = \lambda \left[C_{i2}^n \right]$, i = 1, 2, there exists a homeomorphism, $H(S^n) = S^n$, such that $H(\overline{C_{1i}^n}) = \overline{C_{2i}^n}$, i = 1, 2.

THEOREM P₃. If C^n is an n-cell, $\lambda[C^n] = \overline{C_1^{n-1}} + \overline{C_2^{n-1}}$ and $\overline{C_1^{n-1}} \cdot \overline{C_2^{n-1}} = \lambda[C_i^{n-1}], i = 1, 2$, there exists an (n-1)-cell C_3^{n-1} such that $\lambda[C_3^{n-1}] = \lambda[C_i^{n-1}], i = 1, 2, \text{ and } \Delta[C_3^{n-1}] \subset C^n \neq 0$.

Let K^n be the same subset of euclidean n-space as in the proof of Theorem P_1 . The (n-1)-dimensional plane $x_1=0$ has in common with K^n the (n-1)-cell K_3^{n-1} . The set $\lambda[K^n]$ is the sum of two closed (n-1)-cells, $\overline{K_1^{n-1}}$ and $\overline{K_2^{n-1}}$, such that $\overline{K_1^{n-1}} \cdot \overline{K_2^{n-1}} = \lambda[K_i^{n-1}]$, i=1,2,3. By Theorem P_2 , there is a homeomorphism, $H_1(\lambda[C^n]) = \lambda[K^n]$, such that $H_1(\overline{C_i^{n-1}}) = \overline{K_i^{n-1}}$, i=1,2. By Theorem P_1 there is a homeomorphism, $H_2(\overline{C^n}) = \overline{K^n}$, such that $H_2(\lambda[C^n]) = H_1(\lambda[C^n])$. The set $H_2^{-1}[K_3^{n-1}]$ is an (n-1)-cell C_3^{n-1} . Obviously $\Delta[C_3^{n-1}]C^n \neq 0$. The set C_3^{n-1} separates C^n into two n-cells.

Remark. In the sequel the symbol C^k (or C_{δ}^k) is always to be understood as designating a k-cell.

4. Principal theorems. We state now our main theorems.

THEOREM I. In order that a space Z^n be a closed n-cell, the following conditions are necessary and sufficient:

(4.1) Z^n is a connected and locally compact Hausdorff space* which is de-

^{*} A Hausdorff space is a space defined by a system of neighborhoods which satisfy the Hausdorff neighborhood axioms. See F. Hausdorff, Grundzüge der Mengenlehre, 1914, p. 213.

fined by a countable set of neighborhoods: $\{N_i\}$, $i=1, 2, 3, \cdots$.

(4.2) Z^n contains a proper subset I^n such that (i) $\overline{I^n} = Z^n$ and (ii) if there is a homeomorphism, $H_1(\lambda[I^n]) = \lambda[I^n]$, there exists a homeomorphism, $H_2(Z^n) = Z^n$, for which $H_2(\lambda[I^n]) = H_1(\lambda[I^n])$.

399

- (4.3) Let W_1 and W_2 be two sets such that $0 \neq W_1 \cdot W_2 \Rightarrow W_i$, $j=1, 2, W_1$ is a neighborhood N_{ξ} and W_2 is an element of $\Delta_{i=1}^a[P_i]V$, where V is either I^n or a neighborhood belonging to I^n and $0 \subseteq P_i \subset \lambda[N_{\alpha_i}]$, $N_{\alpha_i} \notin V$, $\xi \neq \alpha_i$. Then $\overline{W}_2 \cdot \lambda[W_1] = \sum_{j=1}^d Z_j^{n-1}$, $\Delta_{j=1}^d[I_j^{n-1}]W_2 \neq 0$, and, if K_{β_j} is a component of $\lambda[W_2] \lambda[W_2] \cdot Z_1^{n-1}$, there exists $Z_{\beta_j}^{n-1}$ such that $K_{\beta_j} = I_{\beta_j}^{n-1}$.
 - (4.4) $Z^0(\equiv I^0)$ is a set consisting of a single point.

THEOREM I'. This theorem differs from Theorem I only in the following respects: (1) in Condition (4.3), Z_j^{n-1} , I_j^{n-1} , $Z_{\beta_j}^{n-1}$, and $I_{\beta_j}^{n-1}$ are replaced by C_j^{n-1} , C_j^{n-1} , $C_{\beta_j}^{n-1}$, and $C_{\beta_j}^{n-1}$ respectively, and (2) Condition (4.4) is omitted.

- 5. Proof that the conditions in Theorem I' are sufficient. We state first
- 5.1. Lemma 1. There exists a set G of compact neighborhoods which is a subset of the set of all neighborhoods in Z^n having the following properties:
 - (a) The set G is equivalent to the set of all neighborhoods.
- (b) Corresponding to each point p, there exists a subset of $G: G(p) = \{N_{a_i}\}$, $i = 1, 2, 3, \dots$, such that $N_{a_i} \supset p$ and $N_{a_{i+1}} \subset N_{a_i}$.
- (c) If $\{N_{b_i}\}$, $i=1, 2, 3, \dots$, is a set of neighborhoods belonging to G for which $N_{b_{i+1}} \subset N_{b_i}$, then the set $\prod_{i=1}^{\infty} \overline{N}_{b_i}$ consists of a single point.*

Hereafter all neighborhoods mentioned will be members of the set G.

5.2. LEMMA 2. The set $\lambda[I^n]$ is an (n-1)-sphere.

There exists a neighborhood N_a such that $N_a \cdot \lambda[I^n] \neq 0$ and $N_a \Rightarrow I^n$. By Theorem I' (4.3), $Z^n \cdot \lambda[N_a] = \sum_{j=1}^d \overline{C_j^{n-1}}$ and $\Delta[C_d^{n-1}]I^n \neq 0$.

$$I^n = D_1(I^n) + D_2(I^n) + C_d^{n-1}; \ \overline{D_1(I^n)} \cdot \overline{D_2(I^n)} = \overline{C_d^{n-1}}.$$

The set $N_a \cdot \lambda[I^n]$ contains a point p which belongs to one and only one of the sets $\lambda[I^n] \cdot \lambda[D_i(I^n)]$, i = 1, 2. Suppose that $\lambda[D_1(I^n)] \supset p$. There is a neighborhood N_b such that $N_b \supset p$ and $\overline{N}_b \cdot \overline{D^2(I^n)} = 0$.† Then $\lambda[N_b]$ contains a closed (n-1)-cell $\overline{C_a^{n-1}}$ such that $\Delta[C_a^{n-1}]$ $D_1(I^n) \neq 0$ (Theorem I' (4.3)).

^{*} For the proof of this lemma, see I. Gawehn, Über unberandete 2-dimensionale Mannigfaltig-keiten, Mathematische Annalen, vol. 98, p. 339. An understanding of the method by which the sets G(p) are obtained is assumed in 5.8 and 5.9.

[†] The fact that Z^n is a locally compact Hausdorff space assures us of the existence of a neighborhood N_b having the desired properties. In fact, the following proposition, of which we shall make frequent use, holds; If F is a closed set and p, a point not belonging to F, there exists a neighborhood $N_b \supset p$ such that $\overline{N}_b \cdot F = 0$.

$$D_1(I^n) = D_{11}(I^n) + D_{12}(I^n) + C_{\alpha}^{n-1}; \ \overline{D_{11}(I^n)} \cdot \overline{D_{12}(I^n)} = \overline{C_{\alpha}^{n-1}}.$$

Every point of $\lambda[D_1(I^n)]$ not belonging to $\overline{C_{\alpha}^{n-1}}$ belongs to one and only one of the sets $\lambda[D_{1i}(I^n)]$, i=1, 2. Since $\overline{C_d^{n-1}}$ is connected and $\overline{C_d^{n-1}} \cdot \overline{C_d^{n-1}} = 0$, $\overline{C_d^{n-1}}$ belongs to one of the sets $\lambda[D_{1i}(I^n)]$. Suppose that $\overline{C_d^{n-1}} \subset \lambda[D_{12}(I^n)]$. Then $\overline{C_d^{n-1}} \cdot \lambda[D_{11}(I^n)] = 0$.

Case 1. n < 3. Assume that, in this case, $\lambda[I^n] - \lambda[I^n] \cdot \overline{C_d^{n-1}}$ contains an infinite number of components. $\overline{C_d^{n-1}} \subset I^n$. Every component of $\lambda[I^n] - \lambda[I^n] \cdot \overline{C_d^{n-1}}$ is an (n-1)-cell (Theorem I' (4.3)).

If n=1, C_d^0 consists of a single point and $\lambda[I^1] \cdot \overline{C_d^0} = 0$. Then $\lambda[I^1]$ is not a connected set and consists of infinitely many points.

Let n=2. The set C_d^1 is a 1-cell and $\lambda[C_d^1]$ consists of two points, g_1 and g_2 . $\overline{C_d}^1$ belongs to a component C_m^1 of $\lambda[D_1(I^2)] - \lambda[D_1(I^2)] \cdot \overline{C_a}^1$. The points g_1 and g_2 separate C_m^1 into three 1-cells. Of these three 1-cells, one is C_d^1 and each of the other two 1-cells is a subset of a component of $\lambda[I^2] - \lambda[I^2] \cdot \overline{C_d}^1$ which belongs to $\lambda[D_1(I^2)]$. By a similar process it can be proved that each of the points g_i belongs to the λ -set of one and only one component of $\lambda[I^2] - \lambda[I^2] \cdot \overline{C_d}^1$ which is contained in $\lambda[D_2(I^2)]$. Every component of $\lambda[I^2] - \lambda[I^2] \cdot \overline{C_d}^1$ belongs to one and only one of the sets $\lambda[D_i(I^2)]$. At least one of the sets $\lambda[D_i(I^2)]$ contains an infinite number of these components. Let $\lambda[D_1(I^2)]$ be such a set.

The set g_1+g_2 cannot belong to the λ -set of a single component of $\lambda[I^2]-\lambda[I^2]\cdot\overline{C_d}^1$ which belongs to $\lambda[D_1(I^2)]$. For, suppose that C_e^1 is a component of $\lambda[I^2]-\lambda[I^2]\cdot\overline{C_d}^1$ which belongs to $\lambda[D_1(I^2)]$ and whose λ -set is g_1+g_2 . There exists N_f such that $N_f\cdot\lambda[D_1(I^2)]\neq 0$ and $\overline{N_f}\cdot(\overline{C_d}^1+C_e^1)=0$. Then $\lambda[N_f]$ contains a 1-cell C_x^1 such that $\Delta[C_x^1]D_1(I^2)\neq 0$. $\overline{C_d}^1+C_e^1$ is a 1-sphere which belongs to a component of $\lambda[D_1(I^2)]-\lambda[D_1(I^2)]\cdot\overline{C_x}^1$. But such a component would not be a 1-cell. We can now conclude that $\lambda[D_1(I^2)]$ consists of infinitely many components and that each of these components is a 1-cell. This last statement holds true for $\lambda[I^2]$ which is homeomorphic with $\lambda[D_1(I^2)]$.

Since $\lambda[D_2(I^n)] - \overline{C_d^{n-1}} \neq 0$, there exists a closed 1-cell $\overline{C_{\beta}^{n-1}}$ belonging to the λ -set of a neighborhood and $\Delta[C_{\beta}^{n-1}]D_2(I^n) \neq 0$, n = 1, 2.

$$D_2(I^n) = D_{21}(I^n) + D_{22}(I^n) + C_{\beta}^{n-1}; \ \overline{D_{21}(I^n)} \cdot \overline{D_{22}(I^n)} = \overline{C_{\beta}^{n-1}}.$$

Suppose that $\overline{C_d^{n-1}} \subset \lambda[D_{22}(I^n)]$. Then $\overline{C_d^{n-1}} \cdot \lambda[D_{21}(I^n)] = 0$. $\lambda[D_{i1}(I^n)]$, i = 1, 2, being homeomorphic with $\lambda[I^n]$, consists of infinitely many components, each of which is an (n-1)-cell.

There exists a homeomorphism, $H(\lambda[D_{11}(I^n)] = \lambda[D_{21}(I^n)])$. It can be shown that $\lambda[D_{11}(I^n)] = G_1 + G_2$, where $G_i \neq 0$, $\overline{G}_1 \cdot G_2 + G_1 \cdot \overline{G}_2 = 0$,

 $G_1 \subset \lambda[D_{11}(I^n)] \cdot \lambda[I^n]$, $H(G_1) \subset \lambda[D_{21}(I^n)] \cdot \lambda[I^n]$ and both of the sets, $\lambda[D_{11}(I^n)] \cdot \lambda[I^n] - G_1$ and $\lambda[D_{21}(I^n)] \cdot \lambda[I^n] - H(G_1)$, are non-vacuous. Let $H(G_1) = G_1'$.

There exists a homeomorphism, $H_1(\lambda[I^n]) = \lambda[I^n]$, such that $H_1(G_1) = H(G_1) = G_1'$, $H_1(G_1') = H^{-1}(G_1') = G_1$ and, if x is a point of $\lambda[I^n] - G_1 - G_1'$, $H_1(x) = x$. By Theorem I (4.2), there is a homeomorphism, $H_2(Z^n) = Z^n$, for which $H_2(\lambda[I^n]) = H_1(\lambda[I^n])$.

Under the transformation H_2 , a subset of $\overline{D_{i1}(I^n)}$, i=1, 2, is transformed into itself and a subset of $\overline{D_{i1}(I^n)}$ is transformed into a subset of $\overline{D_{k1}(I^n)}$, $j\neq k;\ j,\ k=1,\ 2$. The set $\overline{D_{i1}(I^n)}$, being homeomorphic with Z^n , is a connected set. Since H_2 is a homeomorphism, $H_2(\overline{D_{i1}(I^n)})$ is a connected set. $H_2(\overline{D_{i1}(I^n)})$ contains non-vacuous subsets in each of the two sets, $\overline{D_1(I^n)} - \overline{C_d^{n-1}}$ and $\overline{D_2(I^n)} - \overline{C_d^{n-1}}$. Neither of the two last-named sets contains a point or limit point of the other. Therefore, $H_2(\overline{D_{i1}(I^n)}) \cdot \overline{C_d^{n-1}} \neq 0$.

Let n=1. In this case the point $C_d{}^0$ is the transform of two distinct points belonging respectively to $\overline{D_{11}(I^n)}$ and $\overline{D_{21}(I^n)}$. This is impossible since H_2 is a homeomorphism. Therefore, our assumption that $\lambda[I^1] - \lambda[I^1] \cdot \overline{C_d}{}^0$ has an infinite number of components has led to a contradiction. Hence $\lambda[I^1]$ consists of a finite number of points. Let n_1 be the number of points in $\lambda[I^1]$.

$$\lambda[I^{1}] = \lambda[D_{1}(I^{1})] \cdot \lambda[I^{1}] + \lambda[D_{2}(I^{1})] \cdot \lambda[I^{1}],$$

 $n_{1} = 2(n_{1} - 1),$

 $n_{1} = 2.$

Therefore, $\lambda[I^1]$ is a 0-sphere.

Let n=2. Since each point of $\lambda[C_d^1]$ is a limit point of $\lambda[I^2]-G_1-G_1'$, $H_2(\lambda[C_d^1])=\lambda[C_d^1]$ and $H_2(\overline{D_{i_1}(I^2)})\cdot\overline{C_d^1}\in C_d^1$, i=1,2. Then $\overline{C_d^1}-\sum_{i=1}^2H_2(\overline{D_{i_1}(I^2)})\cdot\overline{C_d^1}$ is not a connected set. $H_2(\overline{C_d^1})\not\in\overline{C_d^1}$. For, if $H_2(\overline{C_d^1})\in\overline{C_d^1}$, $H_2(\overline{C_d^1})\in\overline{C_d^1}-\sum_{i=1}^2H_2(\overline{D_{i_1}(I^2)})\cdot\overline{C_1}$. But no subset of $\overline{C_d^1}-\sum_{i=1}^2H_2(\overline{D_{i_1}(I^2)})\cdot\overline{C_d^1}$ containing $\lambda[C_d^1]$ is a connected set. Therefore, $H_2(C_d^1)$ contains a point q not belonging to C_d^1 . This point q belongs either to $D_1(I^2)$ or to $D_2(I^2)$. The discussion is of the same character in either case. Suppose that $D_2(I^2)\supset q$ and $H_2^{-1}(q)=q'$. Since C_d^1 contains no point which is a limit point of G_1 , q' is not a limit point of G_1 , $H_2(\lambda[D_1(I^2)]\cdot\lambda[I^2]-G_1)=\lambda[D_1(I^2)]\cdot\lambda[I^2]-G_1$. The point q, which belongs to $D_2(I^2)$, is not a limit point of $H_2(\lambda[D_1(I^2)]\cdot\lambda[I^2]-G_1$. Therefore, q' is not a limit point of $\lambda[D_1(I^2)]\cdot\lambda[I^2]-G_1$. Then there exists N_r such that $N_r\supset q'$ and $\overline{N_r}\cdot(\lambda[D_1(I^2)]-C_d^1)=0$. The set $\lambda[N_r]$ contains a closed 1-cell $\overline{C_s^1}$ such that $\Delta[C_s^1]D_1(I^2)\not=0$. Since the λ -set of each descendant of $D_1(I^2)$ generated by C_s^1 is homeomorphic with $\lambda[D_1(I^2)]$, each component of the λ -set of such a de-

scendant, under our assumption, is a 1-cell. $\overline{C_{\kappa}^1}$ belongs to a component of the λ -set of each descendant of $D_1(I^2)$ generated by C_{κ}^1 and $\overline{C_{\kappa}^1} \cdot (\lambda \left[D_1(I^2)\right] - C_d^1) = 0$. Then $\lambda \left[C_{\kappa}^1\right] \subset C_d^1$. The set C_d^1 contains a 1-cell C_{μ}^1 such that $\lambda \left[C_{\mu}^1\right] = \lambda \left[C_{\kappa}^1\right]$. The λ -set of one of the descendants of $D_1(I^2)$ generated by C_{κ}^1 contains the 1-sphere $\overline{C_{\kappa}^1} + C_{\mu}^1$. This contradicts the fact that every component of the λ -set of a descendant of $D_1(I^2)$ generated by C_{κ}^1 is a 1-cell. Hence our assumption that $\lambda \left[I^2\right] - \lambda \left[I^2\right] \cdot \overline{C_d^1}$ contains infinitely many components has led to a contradiction.

The set $\lambda[I^2] - \lambda[I^2] \cdot \overline{C_d}$ is non-vacuous and consists of a finite number of components $C_{\alpha_1}^1$, $C_{\alpha_2}^1$, \cdots , $C_{\alpha_f}^1$. There exists N_s such that $N_s \cdot C_{\alpha_1}^1 \neq 0$ and $\overline{N_s} \cdot \sum_{t=2}^f \overline{C_{\alpha_i}^1} = 0$. The set $\lambda[N_s]$ contains a closed 1-cell $\overline{C_t}^1$ such that $\Delta[C_t^1]I^2 \neq 0$. As in the above, it can be shown that the λ -set of one of the descendants of I^2 generated by C_t^1 contains a 1-sphere. Then $\lambda[I^2]$ contains a 1-sphere S^1 . Suppose that $\lambda[I^2]$ contains a point g not belonging to S^1 . There exists N_m such that $N_m \supset g$ and $\overline{N_m} \cdot S^1 = 0$. Then $\lambda[N_m]$ contains a closed 1-cell $\overline{C_\rho}^1$ such that $\Delta[C_\rho^1]I^2 \neq 0$. S^1 , being a connected set, belongs to a component of $\lambda[I^2] - \lambda[I^2] \cdot \overline{C_\rho}^1$. But such a component, containing a 1-sphere, would not be a 1-cell. Hence $\lambda[I^2] = S^1$.

The set $\lambda[I^2] - \lambda[I^2] \cdot \overline{C_{d^1}}$ consists of two components belonging to $\lambda[D_1(I^2)]$ and $\lambda[D_2(I^2)]$ respectively and $\lambda[C_{d^1}]$ is the λ -set of each component.

Case 2. $n \ge 3$. The set $\overline{C_d^{n-1}}$, being a connected set, belongs to a component C_{ξ}^{n-1} of $\lambda[D_1(I^n)] - \lambda[D_1(I^n)] \cdot \overline{C_a^{n-1}}$ (see the first part of this proof). By the Jordan-Brouwer Theorem, ${}^*C_{\xi}^{n-1} - \lambda[C_d^{n-1}] = M_1 + M_2$, $\overline{M}_1 \cdot \overline{M}_2 = \lambda[C_d^{n-1}]$, and M_i , i = 1, 2, is a connected set. Since C_d^{n-1} is connected, one of the sets M_i contains no point of C_d^{n-1} . Let M_1 be this set. Then M_1 is a subset of a component C_h^{n-1} of $\lambda[I^n] - \lambda[I^n] \cdot \overline{C_d^{n-1}}$ which belongs to $\lambda[D_1(I^n)]$ and which has $\lambda[C_d^{n-1}]$ for its λ -set. Then $\lambda[D_1(I^n)]$ contains the (n-1)-sphere $\overline{C_d^{n-1}} + C_h^{n-1}$. Therefore, $\lambda[I^n]$ contains an (n-1)-sphere. By an argument used in connection with the proof for the case when n = 2, it can be shown that $\lambda[I^n]$ is an (n-1)-sphere. The set $\lambda[I^n] - \lambda[I^n] \cdot \overline{C_d^{n-1}}$ consists of two components belonging to $\lambda[D_1(I^n)]$ and $\lambda[D_2(I^n)]$ respectively, and $\lambda[C_d^{n-1}]$ is the λ -set of each component.

5.3. Lemma 3. If N_{α} is a neighborhood such that $\overline{N}_{\alpha} \subset I^n$, the set $\lambda[N_{\alpha}]$ is an (n-1)-sphere.

Since N_{α} is an open proper subset of the connected space Z^{n} , $\lambda[N_{\alpha}] \neq 0$. \overline{N}_{α} is compact (Lemma 1).

^{*} L. E. J. Brouwer, Beweis des Jordanschen Satzes für den n-dimensionalen Raum, Mathematische Annalen, vol. 71, p. 314; J. W. Alexander, A proof and extension of the Jordan-Brouwer separation theorem, these Transactions, vol. 23, p. 333.

- Case 1. n = 1. There exists a set of neighborhoods $\{N_{\phi_i}\}$, $i = 1, 2, \dots, m$, such that $I^n \supset N_{\phi_i} \supset N_{\phi$
- Case 2. n>1. There exists N_{ψ} such that $N_{\psi} \cdot \lambda[N_{\alpha}] \neq 0$, $N_{\psi} \subset I^n$ and $N_{\psi} \Rightarrow N_{\alpha}$. Then $\overline{N}_{\psi} \cdot \lambda[N_{\alpha}] = \sum_{j=1}^{d} \overline{C_{j}^{n-1}}$ and $\Delta_{j=1}^{d}[C_{j}^{n-1}]N_{\psi} \neq 0$. Let p be a point of C_{1}^{n-1} . The point p is not a limit point of the set $\sum_{j=2}^{d} \overline{C_{j}^{n-1}}$. There is a neighborhood N_{δ} such that $N_{\delta} \ni p$, $\overline{N}_{\delta} \subset N_{\psi}$ and $\overline{N}_{\delta} \cdot \sum_{j=2}^{d} C_{j}^{n-1} = 0$. Then $\lambda[N_{\delta}]$ contains a closed (n-1)-cell $\overline{C_{i}^{n-1}}$ such that $\Delta[C_{i}^{n-1}]N_{\alpha} \neq 0$. By arguments given in the proof of Lemma 2, it can be proved that C_{1}^{n-1} contains an (n-1)-cell C_{a}^{n-1} whose λ -set is $\lambda[C_{i}^{n-1}]$. It is evident that the λ -set of one of the descendants of N_{α} generated by C_{i}^{n-1} contains the (n-1)-sphere $\overline{C_{i}^{n-1}} + C_{a}^{n-1}$ and, furthermore, that the λ -set of this descendant is identical with this (n-1)-sphere. Hence $\lambda[N_{\alpha}]$ is an (n-1)-sphere.
- 5.4. Lemma 4. Let W_1 , W_2 , and V be the sets given in Theorem I' (4.3) with the following restrictions: $\overline{W}_1 \subset I^n$ and, if $V \neq I^n$, $\overline{V} \subset I^n$. Then $W_2 = \sum_{i=1}^{d+1} D_i + \sum_{j=1}^{d} C_i^{n-1}$, D_i is a proper descendant of W_2 and $D_r \cdot D_s = 0$, $r \neq s$. If μ is a fixed value of j, there are two sets, D_{α} and D_{β} , such that $\lambda[D_{\alpha}] \cdot \lambda[D_{\beta}] = \overline{C_{\mu}^{n-1}}$ and $C_{\mu}^{n-1} \cdot \lambda[D_{\delta}] = 0$, $\delta \neq \alpha$, β . The set $\lambda[D_{\alpha}] \overline{C_{\mu}^{n-1}}$ is an (n-1)-cell whose λ -set is $\lambda[C_{\mu}^{n-1}]$.

Since $\lambda[W_i]$, i=1, 2, is an (n-1)-sphere, it can be shown that $\lambda[C_i^{n-1}]$ $\subset \lambda[W_2]$. The other desired results can be obtained by referring to the definitions in §2, Theorem P_1 and results previously established.

The set of descendants given in the lemma is called the set of final descendants of W_2 generated by $\lambda[W_1]$.

COROLLARY. If V is I^n or is strongly homeomorphic with I^n , $\Delta[C_i^{n-1}]W_2 \neq 0$ for all values of j.

This proposition can be proved by means of the results given in the lemma, Theorem I' (4.2) and Theorems P_1 and P_2 .

5.5. Lemma 5. Let C_1^{n-1} and C_2^{n-1} be two (n-1)-cells such that $\lambda[I^n] = \overline{C_1^{n-1}} + \overline{C_2^{n-1}}$ and $\overline{C_1^{n-1}} \cdot \overline{C_2^{n-1}} = \lambda[C_i^{n-1}]$, i = 1, 2. Then there exists an (n-1)-cell C_3^{n-1} having the following properties: $\lambda[C_3^{n-1}] = \lambda[C_i^{n-1}]$, i = 1, 2, and $\Delta[C_3^{n-1}]I^n \neq 0$.

There exists N_f such that $\lambda[N_f]$ contains a closed (n-1)-cell $\overline{C_{\alpha}^{n-1}}$ and $\Delta[C_{\alpha}^{n-1}]I^n\neq 0$. From the proof of Lemma 2 it is known that $\lambda[I^n]=\overline{C_{\beta_1}^{n-1}}+\overline{C_{\beta_2}^{n-1}}$, where $\overline{C_{\beta_1}^{n-1}}\cdot\overline{C_{\beta_2}^{n-1}}=\lambda[C_{\alpha}^{n-1}]=\lambda[C_{\beta_i}^{n-1}]$, i=1, 2. By Corollary, Theorem P_2 , there exists a homeomorphism, $H_1(\lambda[I^n])=\lambda[I^n]$, such that $H_1(\overline{C_{\beta_1}^{n-1}})=\overline{C_i^{n-1}}$, i=1, 2. There is a homeomorphism, $H_2(Z^n)=Z^n$, of such

nature that $H_2(\lambda[I^n]) = H_1(\lambda[I^n])$. The set $H_2(C_{\alpha}^{n-1})$ is an (n-1)-cell C_3^{n-1} . Since H_2 is a homeomorphism, $\Delta[C_3^{n-1}]I^n \neq 0$.

5.6. Lemma 6. In is a connected set.

Case 1. n=1. $\lambda[I^1]$ consists of two points, p_1 and p_2 . Suppose that I^1 is not connected. Then

$$I^1 = M_1 + M_2$$
; $\overline{M}_1 \cdot M_2 + M_1 \cdot \overline{M}_2 = 0$; $M_i \neq 0$.

The two sets, $M_1+p_1+p_2$ and $M_2+p_1+p_2$, cannot both be connected sets. For, assume that each of these sets is connected. There exists N_h such that $N_h \supset p_1$ and $\overline{N}_h \supset p_2$. Since $M_1+p_1+p_2$ is a connected set, $M_1+p_1+p_2$ contains a point q belonging to $\lambda[N_h]$ and $\Delta[q]I^1 \neq 0$. $M_1 \supset q$. Then $M_2 \supset q$.

$$I^{1} = D_{1}(I^{1}) + D_{2}(I^{1}) + q; \overline{D_{1}(I^{1})} \cdot \overline{D_{2}(I^{1})} = q.$$

Each of the points p_i , i=1, 2, belongs to one and only one of the sets $\lambda[D_i(I^1)]$, j=1, 2. The connected set $M_2+p_1+p_2$ is the sum of two non-vacuous sets belonging respectively to $\overline{D_1(I^1)}-q$ and $\overline{D_2(I^1)}-q$. This is impossible. Therefore, at least one of the sets $M_i+p_1+p_2$ is not connected. Suppose that $M_1+p_1+p_2$ is not connected.

$$M_1 + p_1 + p_2 = P_1 + P_2$$
; $\overline{P}_1 \cdot P_2 + P_1 \cdot \overline{P}_2 = 0$; $P_i \neq 0$.

The set p_1+p_2 cannot belong to one of the sets P_i . For, suppose that $P_1 \supset p_1+p_2$. $Z^1=(P_1+M_2)+P_2$. But Z^1 is a connected set and $\overline{P_1+M_2}\cdot P_2+(P_1+M_2)\cdot \overline{P_2}=0$. Then let $P_i\supset p_i,\ i=1,\ 2$. The set P_1 is connected. For, suppose that

$$P_1 = P_{11} + P_{12}; \ \overline{P}_{11} \cdot P_{12} + P_{11} \cdot \overline{P}_{12} = 0; \ P_{1i} \neq 0.$$

The point p_1 belongs to one of the sets P_{1i} . Assume that $P_{11} \supset p_1$. $Z^1 = (P_{11} + P_2 + M_2) + P_{12}$. Again we have an impossible situation, since $\overline{P_{11} + P_2 + M_2} \cdot P_{12} + (P_{11} + P_2 + M_2) \cdot \overline{P_{12}} = 0$. Then P_1 is a connected set. Similarly, P_2 is a connected set. Since $M_1 \neq 0$, at least one of the sets P_i contains more than one point. Let P_1 be such a set. Now assume that $M_2 + p_1 + p_2$ is a connected set. There exists N_g such that $N_g \supset p_1$ and $N_g \supset p_1$. Then P_1 , being a connected set, contains a point x of $\lambda [N_g]$ and $\lambda [x]I^1 \neq 0$.

$$I^{1}=D_{\delta,}(I^{1})+D_{\delta,}(I^{1})+x; \overline{D_{\delta,}(I^{1})}\cdot \overline{D_{\delta,}(I^{1})}=x.$$

Since x belongs to M_1 , the connected set $M_2 + p_1 + p_2$ is the sum of two non-vacuous sets belonging respectively to $\overline{D_{\delta_1}(I^1)} - x$ and $\overline{D_{\delta_2}(I^1)} - x$. Then $M_2 + p_1 + p_2$ is not a connected set.

$$M_2 + p_1 + p_2 = R_1 + R_2$$
; $\overline{R}_1 \cdot R_2 + R_1 \cdot \overline{R}_2 = 0$; $R_i \neq 0$.

As in the above, it can be shown that, by a proper choice of subsets, $R_i \supset p_i$, i=1, 2. $Z^1 = (P_1 + R_1) + (P_2 + R_2)$ and $P_1 + R_1 \cdot (P_2 + R_2) + (P_1 + R_1) \cdot P_2 + R_2 = 0$. But Z^1 is connected. This final contradiction shows that I^1 is a connected set.

Case 2. n>1. There exists N_r such that $\overline{N}_r \subset I^n$. $\lambda[N_r]$ is an (n-1)-sphere (Lemma 4). Suppose that \overline{N}_r is not connected. Then

$$\overline{N}_r = B_1 + B_2$$
; $\overline{B}_1 \cdot B_2 + B_1 \cdot \overline{B}_2 = 0$; $B_i \neq 0$.

 $\lambda[N_r]$, being a connected set, belongs to one of the sets B_i . Suppose that $\lambda[N_r] \subset B_1$. $Z^n = [B_1 + (Z^n - \overline{N}_r)] + B_2$ and $\overline{B_1 + (Z^n - \overline{N}_r)} \cdot B_2 + [B_1 + (Z^n - \overline{N}_r)] \cdot \overline{B_2} = 0$. But Z^n is connected. Then \overline{N}_r is connected.

Let T be a component of I^n . $Z^n = T + (\lambda[I^n] + (I^n - T))$. If a point q of T were a limit point of $I^n - T$, there would be a neighborhood N_b such that $\overline{N}_b \subset I^n$, $N_b \supset q$ and $N_b \cdot (I^n - T) \neq 0$. Then the set $T + \overline{N}_b$ would be a connected set. This contradicts the fact that T is a maximal connected subset of I^n . The set $\lambda[I^n]$ contains a limit point of T.

Let p be a point of $\lambda[T] \cdot \lambda[I^n]$. There exists N_s such that $N_s \supset p$ and $\overline{N}_s \not T$. Then $T \cdot \lambda[N_s] \neq 0$. $Z^n \cdot \lambda[N_s] = \sum_{j=1}^d \overline{C_j^{n-1}}, \overline{C_j^{n-1}} \cdot I^n = C_j^{n-1}$ and $T \cdot \lambda[N_s] \subset \sum_{j=1}^d C_j^{-1}$. Let $T \cdot C_1^{n-1} \neq 0$. Then $C_1^{n-1} \subset T$. $\Delta[C_1^{n-1}]I^n \neq 0$ (Corollary, Lemma 4).

$$I^{n} = D_{1}(I^{n}) + D_{2}(I^{n}) + C_{1}^{n-1}; \overline{D_{1}(I^{n})} \cdot \overline{D_{2}(I^{n})} = \overline{C_{1}^{n-1}}.$$

There exist two sets, $C_{\alpha_1}^{n-1}$ and $C_{\alpha_2}^{n-1}$ such that $\lambda[I^n] = \overline{C_{\alpha_1}^{n-1}} + \overline{C_{\alpha_2}^{n-1}}$ and $\overline{C_{\alpha_1}^{n-1}} \cdot \overline{C_{\alpha_2}^{n-1}} = \lambda[C_1^{n-1}] = \lambda[C_{\alpha_i}^{n-1}], i = 1, 2$. Suppose that $\lambda[D_i(I^n)] \supset C_{\alpha_i}^{n-1}, i = 1, 2$. Let S^{n-1} be the (n-1)-sphere in euclidean n-space E^n whose points have coordinates which satisfy the equation: $\sum_{i=1}^n x_i^2 = 1$. The (n-1)-dimensional plane $x_1 = 0$ separates S^{n-1} into two (n-1)-cells, K_1^{n-1} and K_2^{n-1} , such that $S^{n-1} = \overline{K_1^{n-1}} + \overline{K_2^{n-1}}$ and $\overline{K_1^{n-1}} \cdot \overline{K_2^{n-1}} = \lambda[K_i^{n-1}], i = 1, 2$. By Theorem P_2 there is a homeomorphism, $H(\lambda[I^n]) = S^{n-1}$, such that $H(\overline{C_{\alpha_i}^{n-1}}) = \overline{K_i^{n-1}}, i = 1, 2$.

Let p_1 be a point of $C_{\alpha_1}^{n-1}$ and $H(p_1) = p_1'$. $K_1^{n-1} \supset p_1'$. In E^n there exists an (n-1)-dimensional plane E_1^{n-1} such that E_1^{n-1} contains the points p_1' and $(0, 0, \dots, 0)$. E_1^{n-1} separates S^{n-1} into two (n-1)-cells, $K_{\beta_1}^{n-1}$ and $K_{\beta_2}^{n-1}$. $S^{n-1} = K_{\beta_1}^{n-1} + K_{\beta_2}^{n-1}$, $K_{\beta_1}^{n-1} \cdot K_{\beta_2}^{n-1} = \lambda [K_{\beta_1}^{n-1}]$, $\lambda [K_{\beta_i}^{n-1}] \supset p_1'$ and $\lambda [K_{\beta_i}^{n-1}] \cdot K_2^{n-1} \neq 0$, i = 1, 2. Let $H^{-1}(K_{\beta_i}^{n-1}) = C_{\beta_i}^{n-1}$. Then $\lambda [C_{\beta_i}^{n-1}] \supset p_1$, $\lambda [C_{\beta_i}^{n-1}] \cdot C_{\alpha_2}^{n-1} \neq 0$ and $\lambda [I^n] = \overline{C_{\beta_1}^{n-1}} + \overline{C_{\beta_2}^{n-1}} \cdot \overline{C_{\beta_1}^{n-1}} \cdot \overline{C_{\beta_2}^{n-1}} = \lambda [C_{\beta_i}^{n-1}]$, i = 1, 2. By Lemma 5, there exists $C_{\beta_3}^{n-1}$ such that $C_{\beta_3}^{n-1} \subset I^n$ and $\lambda [C_{\beta_i}^{n-1}] = \lambda [C_{\beta_i}^{n-1}]$, i = 1, 2. The connected set $C_{\beta_3}^{n-1}$ contains non-vacuous subsets in each of the two sets, $D_1(I^n)$ and $D_2(I^n)$. Therefore $C_{\beta_3}^{n-1} \cdot C_1^{n-1} \neq 0$. Since $C_1^{n-1} \subset I$, $C_{\beta_3}^{n-1} \subset I$. Then p_1 , any point of $C_{\alpha_1}^{n-1}$, is a limit point of I. In the same man-

ner it can be shown that $C_{\alpha_2}^{n-1} \subset \lambda[T]$. Hence $\lambda[T] = \lambda[I^n]$. If I^n contains a component T_1 distinct from T, $\lambda[T_1] = \lambda[I^n]$. From the preceding discussion, it is seen that $T_1 \cdot C_1^{n-1} \neq 0$. Then T_1 cannot be distinct from T.

5.7. LEMMA 7. There exists a neighborhood N_{α} such that $\overline{N}_{\alpha} \subset I^{n}$ and N_{α} is strongly homeomorphic with I^{n} .

There exists N_t such that $N_t \cdot \lambda[I^n] \neq 0$ and $N_t \triangleright I^n$. Then $Z^n \cdot \lambda[N_t]$ $=\sum_{i=1}^{d} \overline{C_i^{n-1}}$. Let $D_1(I^n)$ and $D_2(I^n)$ be the two members of the set of final descendants of I^n generated by $\lambda[N_t]$ which have C_1^{n-1} on their λ -sets (Lemma 4). Let p be a point of C_1^{n-1} . There is a neighborhood N_{α} such that $N_{\alpha} \supset p$ and \overline{N}_{α} belongs to the set $D_1(I^n) + D_2(I^n) + C_1^{n-1}$. $\lambda[N_t]$ generates a set of final descendants for N_{α} . $\overline{N}_{\alpha} \cdot \lambda[N_t] = \sum_{j=1}^m \overline{C_{\delta_j}^{n-1}}$. Since $\overline{N}_{\alpha} \cdot \lambda[N_t] \subset C_1^{n-1}$, $\sum_{j=1}^{m} \overline{C_{\delta_{i}}^{n-1}} \subset C_{1}^{n-1}$. Let $D_{1}(N_{\alpha})$ and $D_{2}(N_{\alpha})$ be the two members of the set of final descendants of N_{α} generated by $\lambda[N_t]$ which have $C_{\delta_1}^{n-1}$ on their λ -sets. $\lambda[N_{\alpha}]$ generates a set of final descendants for each of the sets $D_i(I^n)$, i=1, 2. $C_{\delta_1}^{n-1} \cdot \lambda[N_{\alpha}] = 0.$ Then, since $C_{\delta_1}^{n-1}$ is a connected set, $C_{\delta_1}^{n-1}$ belongs to the λ -set of one and only one final descendant of each of the sets $D_i(I^n)$, i=1, 2, generated by $\lambda[N_{\alpha}]$. Let these two final descendants be $D_{11}(I^{n})$ and $D_{21}(I^n)$ belonging to $D_1(I^n)$ and $D_2(I^n)$ respectively. There exists N_e such that $N_e \cdot C_{\delta_1}^{n-1} \neq 0$ and N_e belongs to the set $D_{11}(I^n) + D_{21}(I^n) + C_{\delta_1}^{n-1}$. N_e contains a point p_1 of $D_1(N_\alpha)$. The point p_1 belongs to one of the sets $D_{i1}(I^n)$. Suppose that $D_{11}(I^n) \supset p_1$. Since I^n is a connected set, $D_{11}(I^n)$ is connected. But $D_{11}(I^n) \cdot (\lambda[N_\alpha] + \lambda[N_t]) = 0$. Then $D_{11}(I^n) \subset D_1(N_\alpha)$. Since each of the two sets, $\lambda[I^n]$ and $\lambda[N_\alpha]$, is an (n-1)-sphere, each of the sets, $\lambda[D_{11}(I^n)]$ and $\lambda[D_1(N_\alpha)]$, is an (n-1)-sphere. $\lambda[D_{11}(I^n)] \subset \lambda[D_1(N_\alpha)]$. Therefore $\lambda[D_{11}(I^n)]$ $\equiv \lambda[D_1(N_\alpha)]$, since no proper subset of an (n-1)-sphere is an (n-1)-sphere. No point of $D_1(N_{\alpha})$ can belong to any final descendant of one of the sets $D_i(I^n)$, i=1, 2, generated by $\lambda[N_\alpha]$ other than $D_{11}(I^n)$. For, otherwise, such a descendant would belong to $D_1(N_\alpha)$ and its λ -set would be identical with $\lambda[D_1(N_\alpha)]$ and, therefore, with $\lambda[D_{11}(I^n)]$ —an impossible situation. Then $D_1(N_\alpha) = D_{11}(I^n)$. Hence $D_1(N_\alpha)$ is strongly homeomorphic with I^n . N_α is strongly homeomorphic with I^n .

COROLLARY. Let N_{ρ} and N_{ξ} be two neighborhoods such that $\overline{N}_{\rho} + \overline{N}_{\xi} \subset I^n$, N_{ρ} is connected, N_{ξ} contains a point p of $\lambda[N_{\rho}]$ and $N_{\xi} \not \to N_{\rho}$. Then N_{ξ} is strongly homeomorphic with N_{ρ} and p is a limit point of $Z^n - \overline{N}_{\rho}$.

This proposition can be proved by means of the procedure used in the proof of the lemma.

5.8. Lemma 8. Let N_{α} be a neighborhood such that $\overline{N}_{\alpha} \subset I^n$, N_{α} is strongly homeomorphic with I^n and $\overline{N}_{\alpha} = \sum_{k=1}^{c} P_k$, where each set P_k is an open set with

respect to \overline{N}_{α} . Then $\overline{N}_{\alpha} = \sum_{j=1}^{r} \overline{D}_{j}$ such that $D_{\xi} \cdot D_{\eta} = 0$, $\xi \neq \eta$, and D_{j} belongs to at least one set P_{k} and is strongly homeomorphic with N_{α} . If μ is a fixed value of j, $\lambda[D_{\mu}] = \sum_{i=1}^{b_{\mu}} \overline{C_{\mu_{i}}^{n-1}}$, $C_{\mu_{s}}^{n-1} \cdot C_{\mu_{t}}^{n-1} = 0$, $s \neq t$, and, if h is a fixed value of i, $\lambda[D_{\mu}] - \overline{C_{\mu_{h}}^{n-1}}$ is an (n-1)-cell and either $C_{\mu_{h}}^{n-1} \subset N_{\alpha}$ or $C_{\mu_{h}}^{n-1} \subset \lambda[N_{\alpha}]$. If $C_{\mu_{h}}^{n-1} \subset N_{\alpha}$, there is a set D_{κ} , $\kappa \neq \mu$, such that $\lambda[D_{\mu}] \cdot \lambda[D_{\kappa}] = \overline{C_{\mu_{h}}^{n-1}}$ and $C_{\mu_{h}}^{n-1} \cdot \lambda[D_{\delta}] = 0$, $\delta \neq \mu$, κ . If $C_{\mu_{h}}^{n-1} \subset \lambda[N_{\alpha}]$, $C_{\mu_{h}}^{n-1} \cdot \lambda[D_{\phi}] = 0$, $\phi \neq \mu$.

The following proof applies when n>1. The modifications necessary when n=1 are obvious.

The set \overline{N}_{α} is compact. Assign to each point p of \overline{N}_{α} the neighborhood N_{a_p} such that N_{a_p} is the neighborhood of G(p) (§5.1) of least subscript having the following properties: $\overline{N}_{a_p} \subset I^n$, $N_{a_p} \not N_{\alpha}$ and $N_{a_p} \cdot \overline{N}_{\alpha}$ belongs to at least one of the sets P_k . There exists a finite subset of the set of all such neighborhoods: $T_1 = \{N_{\psi_j}\}, \ j=1, 2, \cdots, \rho$, such that $\sum_{j=1}^{\rho} N_{\psi_j} \supset \overline{N}_{\alpha}$ and $N_{\psi_c} \not \supset N_{\psi_d}, \ c \not = d$. By successive applications of Corollary, Lemma 7, it can be shown that every neighborhood belonging to T_1 is strongly homeomorphic with N_{α} and is, therefore, a connected set.

Let N_{ψ_m} be any neighborhood of T_1 . Every point of the set $\lambda[N_{\psi_m}] \cdot \overline{N}_{\alpha}$ belongs to at least one of the neighborhoods of T_1 . Suppose that the subscripts in the symbols for the neighborhoods constituting T_1 are so chosen that $\{N_{\psi_j}\}$, $j=1, 2, \cdots, m-1$, is the set of neighborhoods such that $\lambda[N_{\psi_m}] \cdot N_{\psi_j} \neq 0, j=1, 2, \cdots, m-1$.

Let A_{ψ_1} represent N_{ψ_1} . If $N_{\psi_1} \cdot \lambda[N_{\psi_2}] = 0$, let $(A_{\psi_1})_{\psi_2}$ be N_{ψ_1} and, if $N_{\psi_1} \cdot \lambda[N_{\psi_2}] \neq 0$, let $(A_{\psi_1})_{\psi_2}$ be the set of final descendants of A_{ψ_1} generated by $\lambda[N_{\psi_2}]$. If $N_{\psi_2} \cdot \lambda[N_{\psi_1}] = 0$, let $B_{\psi_2\psi_1}$ be N_{ψ_2} and, if $N_{\psi_2} \cdot \lambda[N_{\psi_1}] \neq 0$, let $B_{\psi_2\psi_1}$ be the set consisting of those final descendants of N_{ψ_2} generated by $\lambda[N_{\psi_1}]$ which do not lie in N_{ψ_1} .

Every descendant of N_{ψ_2} is a connected set. No final descendant of N_{ψ_2} generated by $\lambda[N_{\psi_1}]$ contains a point of the set $\lambda[N_{\psi_1}] + \lambda[N_{\psi_2}]$. Then every such final descendant lies wholly in N_{ψ_1} or wholly in $Z^n - \overline{N}_{\psi_1}$.

$$\begin{split} A_{\psi_1 \psi_2} &= (A_{\psi_1})_{\psi_2} + B_{\psi_2 \psi_1}, \\ \overline{A}_{\psi_1 \psi_2} &= \overline{N}_{\psi_1} + \overline{N}_{\psi_2}. \end{split}$$

If $A_{\psi_1\psi_2}\cdot\lambda[N_{\psi_1}]=0$, let $(A_{\psi_1\psi_2})_{\psi_1}$ be $A_{\psi_1\psi_2}$ and, if $A_{\psi_1\psi_2}\cdot\lambda[N_{\psi_1}]\neq 0$, let $(A_{\psi_1\psi_2})_{\psi_1}$ be the set consisting of the final descendants of members of $A_{\psi_1\psi_2}$ generated by $\lambda[N_{\psi_1}]$ and those members of $A_{\psi_1\psi_2}$ which contain no point of $\lambda[N_{\psi_1}]$. If $N_{\psi_1}\cdot\lambda[N_{\psi_2}]=0$, $B_{\psi_1\psi_2}=N_{\psi_1}$ and, if $N_{\psi_1}\cdot\lambda[N_{\psi_2}]\neq 0$, $B_{\psi_1\psi_2}$ is the set of those final descendants of N_{ψ_1} generated by $\lambda[N_{\psi_2}]$ which do not lie in N_{ψ_2} . If $B_{\psi_1\psi_2}\cdot\lambda[N_{\psi_1}]=0$, $B_{\psi_1\psi_2\psi_1}=B_{\psi_1\psi_2}$ and, if $B_{\psi_1\psi_2}\cdot\lambda[N_{\psi_1}]\neq 0$, $B_{\psi_1\psi_2\psi_1}$ is the set consisting of the final descendants of members of $B_{\psi_1\psi_2}$ generated by

 $\lambda[N_{\psi_1}]$ which do not lie in N_{ψ_1} and those members of B_{ψ,ψ_2} which contain no point of $\lambda[N_{\psi_1}]$.

$$A_{\psi_{1}\psi_{2}\psi_{1}} = (A_{\psi_{1}\psi_{2}})_{\psi_{1}} + B_{\psi_{1}\psi_{2}\psi_{1}},$$

$$\overline{A}_{\psi_{1}\psi_{2}\psi_{1}} = \sum_{j=1}^{3} \overline{N}_{\psi_{j}}.$$

Proceeding in this manner, we obtain $A_{\psi,\psi}, \dots, \psi_{m-1}$.

$$A_{\psi_1\psi_2\dots\psi_{m-1}} = (A_{\psi_1\psi_2\dots\psi_{m-2}})_{\psi_{m-1}} + B_{\psi_{m-1}\dots\psi_2\psi_1},$$

$$\overline{A}_{\psi_1\psi_2\dots\psi_{m-1}} = \sum_{j=1}^{m-1} \overline{N}_{\psi_j}.$$

Considering in the next step the neighborhood N_{ψ_m} , we obtain $A_{\psi_1\psi_2...\psi_{m-1}\psi_m}$. If T_1 contains additional neighborhoods $N_{\psi_{m+j}}$, $j=1, 2, \cdots, s$, $N_{\psi_{m+j}} \cdot (\lambda[N_{\psi_m}] \cdot \overline{N}_{\alpha}) = 0$. Continuing as in the above, we obtain finally

$$\overline{A}_{\psi_1\psi_2\cdots\psi_m\cdots\psi_\rho} = \sum_{i=1}^\rho \overline{N}_{\psi_j}.$$

Let A be the set consisting of those final descendants of members of $A_{\psi_1\psi_2...\psi_m...\psi_\rho}$ generated by $\lambda[N_\alpha]$ which lie in N_α and those members of $A_{\psi_1\psi_2...\psi_m...\psi_\rho}$ which lie in N_α . $\overline{A} = \overline{N}_\alpha \cdot \sum_{j=1}^\rho \overline{N}_{\psi_j} = \overline{N}_\alpha$. Since the members of A are connected sets and $A \cdot (\lambda[N_\alpha] + \sum_{j=1}^\rho \lambda[N_{\psi_j}]) = 0$, the subdivision of \overline{N}_α obtained by the above process is unique, that is, the subdivision is independent of the order in which the neighborhoods N_{ψ_j} enter into the discussion.

Since $\lambda[N_{\psi_m}]$ generates a set of final descendants for each of the neighborhoods N_{ψ_j} , $j=1,\ 2,\cdots,m-1$, the set $\lambda[N_{\psi_m}]\cdot\sum_{j=1}^{m-1}\overline{N}_{\psi_j}$ is, topologically, an (n-1)-dimensional euclidean set and $\lambda[N_{\psi_m}]\cdot\sum_{j=1}^{m-1}\lambda[N_{\psi_j}]$ is an (n-2)-dimensional set. Then $\lambda[N_{\psi_m}]\cdot A_{\psi_1\psi_2\cdots\psi_{m-1}}\neq 0$. Therefore $\lambda[N_{\psi_m}]$ generates sets of final descendants for certain members of $A_{\psi_1\psi_2\cdots\psi_{m-1}}$. Let E be the set of such members of $A_{\psi_1\psi_2\cdots\psi_{m-1}}$. $\overline{E}\cdot\lambda[N_{\psi_m}]=\sum_{k=1}^t\overline{C_k^{n-1}},\overline{C_k^{n-1}}\cdot E=C_k^{n-1},$ $C_k^{n-1}\cdot C_\eta^{n-1}=0$, $\xi\neq\eta$, and $\lambda[C_k^{n-1}]\subset\lambda[E]$. Suppose that p is a point of $\lambda[N_{\psi_m}]\cdot\overline{A_{\psi_1\psi_2\cdots\psi_{m-1}}}$ and that $\overline{E}\Rightarrow p$. Then $\lambda[A_{\psi_1\psi_2\cdots\psi_{m-1}}]\Rightarrow p$. But $\lambda[A_{\psi_1\psi_2\cdots\psi_{m-1}}]=\sum_{j=1}^{m-1}\lambda[N_{\psi_j}]$. Hence p belongs to the λ -set of at least one of the neighborhoods N_{ψ_j} , j=1, $2,\cdots,m-1$. Let $\lambda[N_{\psi_1}]\Rightarrow p$. $\overline{N_{\psi_1}}\cdot\lambda[N_{\psi_m}]=\sum_{j=1}^b\overline{C_{\delta_j}^{n-1}}$, $N_{\psi_1}\cdot\overline{C_{\delta_j}^{n-1}}=C_{\delta_j}^{n-1}$ and $\sum_{j=1}^b\overline{C_{\delta_j}^{n-1}}\Rightarrow p$. Suppose that $\overline{C_{\delta_1}^{n-1}}\Rightarrow p$. There exists N_g such that $N_g\Rightarrow p$ and $\overline{N_g}\cdot\overline{E}=0$. Then N_g contains a point q of $C_{\delta_1}^{n-1}$. There is a neighborhood N_g such that $N_g\Rightarrow q$, $\overline{N_g}\subset N_{\psi_1}$ and $\overline{N_g}\cdot\overline{E}=0$. $\overline{N_g}\cdot\lambda[N_{\psi_m}]=\sum_{j=1}^a\overline{C_{\theta_j}^{n-1}}\subset A_{\psi_1\psi_2\cdots\psi_{m-1}}=\overline{E}$. The set $\sum_{j=1}^a\overline{C_{\theta_j}^{n-1}}$ is an (n-1)-dimensional set. $\sum_{j=1}^a\overline{C_{\theta_j}^{n-1}}\subset A_{\psi_1\psi_2\cdots\psi_{m-1}}=\overline{E}$. Then $\sum_{j=1}^a\overline{C_{\theta_j}^{n-1}}\subset\lambda[N_{\psi_m}]\cdot\lambda[A_{\psi_1\psi_2\cdots\psi_{m-1}}]$. But $\lambda[N_{\psi_m}]\cdot\lambda[A_{\psi_1\psi_2\cdots\psi_{m-1}}]$ is an (n-2)-dimensional set. The contradiction

here encountered shows that $\lambda[N_{\psi_m}] \cdot \overline{A}_{\psi_1 \psi_2 \dots \psi_{m-1}} = \lambda[N_{\psi_m}] \cdot \overline{E} = \sum_{k=1}^t \overline{C_k^{n-1}}$.

Let $C_{\mathbf{k}_1}^{n-1}$ be one of the sets $C_{\mathbf{k}}^{n-1}$ and M_1 and M_2 be the two final descendants of a member of $A_{\psi_1\psi_2\cdots\psi_{m-1}}$ generated by $\lambda[N_{\psi_m}]$ such that $\overline{M}_1\cdot\overline{M}_2=\lambda[M_1]\cdot\lambda[M_2]=\overline{C_{\mathbf{k}_1}^{n-1}}$. The set $M_1+M_2+C_{\mathbf{k}_1}^{n-1}$ is a descendant of one of the neighborhoods $N_{\psi_j}, j=1, 2, \cdots, m-1$. Let M denote the set $M_1+M_2+C_{\mathbf{k}_1}^{n-1}$. Considering now the set $\lambda[N_{\psi_{m+1}}]$, two possibilities present themselves:

- (1) $\lambda[N_{\psi_{m+1}}] \cdot (M_1 + M_2) = 0$. In this case M_1 and M_2 are members of $A_{\psi_1\psi_2\cdots\psi_m\psi_{m+1}}$.
- (2) $\lambda[N_{\psi_{m+1}}] \cdot (M_1 + M_2) \neq 0$. In this situation $\lambda[N_{\psi_{m+1}}]$ generates final descendants for one or both of the sets M_i . If $\lambda[N_{\psi_{m+1}}] \cdot M_i \neq 0$, $\lambda[N_{\psi_{m+1}}] \cdot \lambda[M_i]$ is an (n-2)-dimensional euclidean set. Then $\lambda[N_{\psi_{m+1}}] \cdot C_{k_1}^{n-1}$ is at most an (n-2)-dimensional set. The set M belongs to one of the members of $A_{\psi_1\psi_2\cdots\psi_{m-1}}$. Let M' be this member. M may be identical with M'. Under our present assumption, $\lambda[N_{\psi_{m+1}}]$ generates a set of final descendants for M'. Let R be the set of these final descendants. $R \subset A_{\psi_1 \psi_2 \cdots \psi_{m-1} \psi_{m+1}}, \overline{C_{k_1}^{n-1}} \subset \overline{R}$ and $C_{\mathbf{k}_1}^{n-1} \cdot \lambda[R] = C_{\mathbf{k}_1}^{n-1} \cdot \lambda[N_{\psi_{m+1}}]. \text{ Then } C_{\mathbf{k}_1}^{n-1} \cdot R \neq 0. \text{ Therefore } \lambda[N_{\psi_m}] \text{ generates}$ sets of final descendants for certain members of R. Let R_1 be the set of such members of R. $\overline{R}_1 \cdot \lambda [N_{\psi_m}] = \sum_{j=1}^a \overline{C_{\omega_j}^{n-1}}$ and $\overline{C_{\omega_j}^{n-1}} \cdot R_1 = C_{\omega_j}^{n-1}$. Since $C_{k_1}^{n-1} \cdot \lambda [R]$ is at most an (n-2)-dimensional set, certain of the sets $\overline{C_{\omega_i}^{n-1}}$ belong to $\overline{C_{k_1}^{n-1}}$. $C_{k_1}^{n-1}$ may be one of the sets $C_{\omega_j}^{n-1}$. Suppose that, by a proper choice of subscripts, $\{\overline{C_{\omega_j}^{n-1}}\}$, $j=1, 2, \cdots, a_1$, is the set of the sets $\overline{C_{\omega_j}^{n-1}}$ which belong to $\overline{C_{k_1}^{n-1}}$. If $\overline{C_{k_1}^{n-1}}$ contains a point q that does not belong to $\sum_{j=1}^{a_1} \overline{C_{\omega_j}^{n-1}}$, $\lambda[R] \supset q$. It can be shown by a method analogous to one used above that $C_{k_1}^{n-1}$ contains no such point q. Therefore, $C_{k_1}^{n-1} = \sum_{j=1}^{a_1} \overline{C_{\omega_j}^{n-1}}$ $A_{\psi_1\psi_2\cdots\psi_{m-1}\psi_m\psi_m} \equiv A_{\psi_1\psi_2\cdots\psi_{m-1}\psi_m\psi_{m+1}}$. Corresponding to each set $C_{\omega_j}^{n-1}$, $j=1, 2, \dots, a_1, A_{\psi_1\psi_2\dots\psi_{m-1}\psi_m\psi_{m+1}}$ contains two members, E_{1i} and E_{2i} , such that $\overline{E}_{1j} \cdot \overline{E}_{2j} = \lambda [E_{1j}] \cdot \lambda [E_{2j}] = \overline{C_{\omega_i}^{n-1}}$.

Let Y be the set consisting of the final descendants of members of $A_{\psi_1\psi_2...\psi_m...\psi_\rho}$ generated by $\lambda[N_\alpha]$ and those members of $A_{\psi_1\psi_2...\psi_m...\psi_\rho}$ which contain no point of $\lambda[N_\alpha]$. It is evident that $\overline{Y} \cdot \sum_{k=1}^t \overline{C_k^{n-1}} = \sum_{j=1}^{\beta} \overline{C_{\mu_j}^{n-1}}$ and, corresponding to each set $C_{i_j}^{n-1}$, Y contains two members, B_{1j} and B_{2j} , such that $\overline{B}_{1j} \cdot \overline{B}_{2j} = \lambda[B_{1j}] \cdot \lambda[B_{2j}] = \overline{C_{\mu_j}^{n-1}}$. $\lambda[N_{\psi_m}] \cdot \overline{A} = \lambda[N_{\psi_m}] \cdot \overline{N_\alpha} \subset \sum_{k=1}^t \overline{C_k^{n-1}}$. If $N_{\psi_m} \subset N_\alpha$, $\lambda[N_{\psi_m}] \cdot \overline{A} = \sum_{j=1}^{\beta} \overline{C_{\mu_j}^{n-1}}$ and, if $N_{\psi_m} \not\in N_\alpha$, $\lambda[N_{\psi_m}] \cdot \overline{A}$ is the sum of a certain number of the sets $\overline{C_{\mu_j}^{n-1}}$.

It can be shown that $\lambda[N_{\alpha}] = \sum_{j=1}^{\nu} \overline{C_{\kappa_{j}}^{n-1}}$ and, corresponding to each set $C_{\kappa_{j}}^{n-1}$, Y contains two members, P_{1j} and P_{2j} , such that $\overline{P}_{1j} \cdot \overline{P}_{2j} = \lambda[P_{1j}] \cdot \lambda[P_{2j}] = C_{\kappa_{j}}^{n-1}$. Therefore $\lambda[A] = \lambda[N_{\alpha}] + \overline{N}_{\alpha} \cdot \sum_{j=1}^{\rho} \lambda[N_{\psi_{j}}] = \sum_{i=1}^{w} \overline{C_{i}}^{n-1}$. Each set C_{i}^{n-1} belongs wholly to N_{α} or wholly to $\lambda[N_{\alpha}]$. $C_{i_{1}}^{n-1} \cdot C_{i_{2}}^{n-1} = 0$, $i_{1} \neq i_{2}$. If $C_{i_{1}}^{n-1} \subset N_{\alpha}$, $C_{i_{1}}^{n-1}$ belongs to the λ -sets of two and only two members of A and no other

member of A contains a point of $C_{i_1}^{n-1}$ on its λ -set. Since every point of $\lambda[N_{\alpha}]$ is a limit point of $Z^n - \overline{N}_{\alpha}$, if $C_{i_1}^{n-1} \subset \lambda[N_{\alpha}]$, $C_{i_1}^{n-1}$ belongs wholly to the λ -set of one and only one member of A and no other member of A contains a point of $C_{i_1}^{n-1}$ on its λ -set. It can be shown without difficulty that, if D is a member of A and $\lambda[D] \supset C_{i_1}^{n-1}$, then $\lambda[D] - \overline{C_{i_1}^{n-1}}$ is an (n-1)-cell whose λ -set is $\lambda[C_{i_1}^{n-1}]$.

Let B be any member of A. Evidently $\lambda[B] = \sum_{\nu=1}^{b} \overline{C_{\nu}^{n-1}}$, $C_{\nu_1}^{n-1} \cdot C_{\nu_2}^{n-1} = 0$, $y_1 \neq y_2$, and $\lambda[B] - \overline{C_{\nu_1}^{n-1}}$ is an (n-1)-cell whose λ -set is $\lambda[C_{\nu_1}^{n-1}]$. Since every neighborhood of T_1 is strongly homeomorphic with I^n , it follows that B is strongly homeomorphic with I^n and Lemma 5 holds if B is substituted for I^n . Then there exists C_{11}^{n-1} such that $\overline{C_{11}^{n-1}} \cdot B = C_{11}^{n-1}$, $\lambda[C_{11}^{n-1}] = \lambda[C_1^{-1}]$ and $\Delta[C_{11}^{n-1}]B \neq 0$.

$$B = D_1(B) + D_2(B) + C_{11}^{n-1}; \overline{D_1(B)} \cdot \overline{D_2(B)} = \overline{C_{11}^{n-1}}.$$

Suppose that $C_1^{n-1} \subset \lambda[D_1(B)]$. Then $\sum_{y=2}^b \overline{C_y^{n-1}} \subset \lambda[D_2(B)]$. It can be shown that the set $\lambda[D_2(B)] - \overline{C_2^{n-1}}$ is homeomorphic with the set $\lambda[B] - \overline{C_2^{n-1}}$. Therefore $\lambda[D_2(B)] - \overline{C_2^{n-1}}$ is an (n-1)-cell whose λ -set is $\lambda[C_2^{n-1}]$. There exists C_{21}^{n-1} such that $\lambda[C_{21}^{n-1}] = \lambda[C_2^{n-1}]$ and $\Delta[C_{21}^{n-1}]D_2(B) \neq 0$.

$$D_2(B) = D_{21}(B) + D_{22}(B) + C_{21}^{n-1}; \overline{D_{21}(B)} \cdot \overline{D_{22}(B)} = \overline{C_{21}^{n-1}}.$$

Suppose that $C_2^{-1} \subset \lambda[D_{21}(B)]$. Then $\sum_{y=3}^b \overline{C_y^{n-1}} \subset \lambda[D_{22}(B)]$. Proceeding in this manner, we finally arrive at the following result: $B = \sum_{j=1}^{b+1} B_j + \sum_{j=1}^b C_{j1}^{n-1}$, where B_i is a descendant of B, $\lambda[B_i] = \overline{C_j^{n-1}} + \overline{C_{j1}^{n-1}}$, $j=1, 2, \cdots, b$, and $\lambda[B_{b+1}] = \sum_{j=1}^b \overline{C_{j1}^{n-1}}$.

Subject each member of A to the same sort of subdivision. The result is a set of descendants of neighborhoods satisfying the requirements of the lemma.

5.9. Let N_{α} be the same as in Lemma 8 and the sets P_k , which occur in this lemma, be the sets $\overline{N}_{\alpha} \cdot N_{\rho_k}$, where N_{ρ_k} is a neighborhood belonging to a finite set of neighborhoods which cover \overline{N}_{α} . Then $\overline{N}_{\alpha} = \sum_{j=1}^{r} \overline{D}_{j}$ (Lemma 8). Each set D_j is the descendant of a neighborhood. As in Lemma 8, denote by T_1 the set of all such neighborhoods. Let $\epsilon_1, \epsilon_2, \dots, \epsilon_n, \dots$ be a sequence of positive numbers such that $\epsilon_{n+1} < \epsilon_n$ and $\lim_{n\to\infty} \epsilon_n = 0$.

Designate by K the set in euclidean n-space E^n whose points have coordinates which satisfy the inequality $\sum_{i=1}^n x_i^2 < 1$. Then K is an n-cell and $\lambda[K]$ is an (n-1)-sphere. It will now be proved that $\overline{K} = \sum_{j=1}^r \overline{K}_j$, where the sets K_j are n-cells and that there exists a homeomorphism, $H(\sum_{j=1}^r \lambda[D_j]) = \sum_{j=1}^r \lambda[K_j]$, such that $H(\lambda[D_j]) = \lambda[K_j]$, $j=1, 2, \cdots, r$. We shall show that, if the above statement is true for r=m, the statement is true for r=m+1.

Suppose that we have a subdivision of \overline{N}_{α} of the sort described in Lemma 8 in which r = m + 1. Then $\overline{N}_{\alpha} = \sum_{j=1}^{m+1} \overline{D}_{j}$. Consider the set D_1 . The discussion in Lemma 8 shows that there exists a set D_{κ} such that $\bar{D}_1 \cdot \bar{D}_{\kappa} = \overline{C_{1\kappa}^{n-1}}$, none of the sets $\lambda[D_i]$, other than $\lambda[D_1]$ and $\lambda[D_{\kappa}]$, contains a point of $C_{1\kappa}^{n-1}$, $\lambda[D] - \overline{C_{1\kappa}^{n-1}}$ is an (n-1)-cell $C_{\mu_1}^{n-1}$, $\lambda[D_{\kappa}] - \overline{C_{1\kappa}^{n-1}}$ is an (n-1)-cell $C_{\mu\kappa}^{n-1}$, and $\overline{C_{\mu_1}^{n-1}} \cdot \overline{C_{\mu\kappa}^{n-1}}$ $=\lambda \left[C_{1\kappa}^{n-1}\right]=\lambda \left[C_{\mu\kappa}^{n-1}\right]=\lambda \left[C_{\mu\kappa}^{n-1}\right]$. Suppose that $\kappa=2$. Let D represent the set $D_1+D_2+C_{12}^{n-1}$. Since we are assuming that our present sets D_i result from a process similar to that employed in Lemma 8, it is clear that D is strongly homeomorphic with N_{α} . $\lambda[D]$ is the (n-1)-sphere $C_{\mu 1}^{n-1} + C_{\mu 2}^{n-1}$. $\overline{N}_{\alpha} = \overline{D} + \sum_{j=3}^{m+1} \overline{D}_{j}$. The sets $D, D_{j}, \lambda[D], \lambda[D_{j}], j=3, 4, \cdots, m+1$, have the properties and the relations among themselves ascribed to the corresponding sets obtained in Lemma 8. Since it is assumed that the statement under consideration is true for r = m, $\overline{K} = \sum_{j=1}^{m} \overline{K}_{j}$ and there exists a homeomorphism, $H_1(\lambda[D] + \sum_{j=3}^{m+1} \lambda[D_j]) = \sum_{j=1}^{m} \lambda[K_j]$, such that $H_1(\lambda[D]) = \lambda[K_1]$ and $H_1(\lambda[D_i]) = \lambda[K_k]$, j = k+1, k = 2, $3, \dots$, m. $H_1(\overline{C_{\mu j}^{n-1}})$ is a closed (n-1)-cell $\overline{C_j^{n-1}}$, j = 1, 2. $\overline{C_1^{n-1}} \cdot \overline{C_2^{n-1}} = \lambda[C_j^{n-1}]$, j = 1, 2. Then, by Theorem P₃ there exists an (n-1)-cell C_3^{n-1} such that $\lambda [C_3^{n-1}] = \lambda [C_j^{n-1}], j=1, 2,$ and $\Delta[C_3^{n-1}]K_1\neq 0$. $H_1(\lambda[C_{12}^{n-1}])=\lambda[C_3^{n-1}]$. By Theorem P_1 there is a homeomorphism, $H_2(\overline{C_{12}^{n-1}}) = \overline{C_3^{n-1}}$, such that $H_2(\lambda[C_{12}^{n-1}]) = H_1(\lambda[C_{12}^{n-1}])$. Since $\Delta[C_3^{n-1}]K_1 \neq 0$, $K_1 = K_{11} + K_{12} + C_3^{n-1}$. K_{1j} , j = 1, 2, is an *n*-cell. There exists a homeomorphism, $H_3(\sum_{j=1}^{m+1} \lambda[D_j]) = \lambda[K_{11}] + \lambda[K_{12}] + \sum_{j=2}^{m} \lambda[K_j]$, in which $H_3(\lambda[D_i]) = H_3(\overline{C_{\mu j}^{n-1}} + \overline{C_{12}^{n-1}}) = H_1(\overline{C_{\mu j}^{n-1}}) + H_2(C_{12}^{n-1}) = \lambda[K_{1j}], \quad j = 1, 2,$ $H_3(\lambda[D_i]) = \lambda[K_k], j = k+1, k=2, 3, \cdots, m$. The statement under consideration holds for r=1. The induction is complete.

We have the desired result $\overline{K} = \sum_{j=1}^r \overline{K}_j$, and there is a homeomorphism, $H(\sum_{j=1}^r \lambda[D_j]) = \sum_{j=1}^r \lambda[K_j]$, such that $H(\lambda[D_j]) = \lambda[K_j]$, $j=1, 2, \cdots, r$. Suppose that K_{ξ} is one of the sets K_i and that $d(K_{\xi}) \geq \epsilon_1$.* Let R be the set of all points of E^n which have coordinates x_i such that $0 < x_i < 1$, $i=1, 2, \cdots, n$. There exists a homeomorphism $H_{\theta}(\overline{R}) = \overline{K}_{\xi}$. The correspondence established by H_{θ} is uniformly continuous both ways. Therefore, there is a number $\delta_1 > 0$ such that, if the distance between any two points of \overline{R} is less than δ_1 , the distance between the corresponding two points of \overline{K}_{ξ} as given by H_{θ} is less than ϵ_1 . Let m be the smallest integer greater than $n^{1/2}/\delta_1$ and let t=1/m. Then $t < \delta_1/n^{1/2}$.

Consider the (n-1)-dimensional planes in E^n whose equations are

$$x_i = yt$$
, $i = 1, 2, \dots, n$; $y = 1, 2, \dots, m-1$.

These (n-1)-dimensional planes are n(m-1) in number and separate R into m^n n-cells R_j such that $\overline{R} = \sum_{j=1}^{m^n} \overline{R}_j$. Let $H_{\theta}(\overline{R}_j) = \overline{K}_{\xi j}$, $j = 1, 2, \dots, m^n$. If

^{*} The symbol d(M) is used to denote the diameter of the set M.

two points belong to a set \overline{R}_j , the difference between the x_i -coordinates $(i=1, 2, \cdots, n)$ of these two points is at most t. Since $t < \delta_1/n^{1/2}$, the distance between these two points is less than δ_1 . Then $d(\overline{K}_{\xi j}) < \epsilon_1, j=1, 2, \cdots, m^n$. Corresponding to K_{ξ} is the set D_{ξ} which belongs to N_{α} . By successive applications of an argument used above, it can be shown that $\overline{D}_{\xi} = \sum_{j=1}^{m^n} \overline{D}_{\xi j}$, where $D_{\xi j}$ is a descendant of D_{ξ} , and there exists a homeomorphism, $H_{\xi}(\sum_{j=1}^{m^n} \lambda[D_{\xi j}]) = \sum_{j=1}^{m^n} \lambda[K_{\xi j}]$, such that $H_{\xi}(\lambda[D_{\xi j}]) = \lambda[K_{\xi j}]$ and $H_{\xi}(\lambda[D_{\xi}]) = H(\lambda[D_{\xi}]) = \lambda[K_{\xi}]$.

Suppose that this procedure is followed in the case of every set K_i whose diameter is not less than ϵ_1 . The final result is that \overline{N}_{α} and \overline{K} can be expressed as follows:

$$\overline{N}_{\alpha} = \sum_{j=1}^{r_1} \overline{D_j^{(1)}},$$

$$\overline{K} = \sum_{j=1}^{r_1} \overline{K_j^{(1)}}.$$

 $d(K_i^{(1)}) < \epsilon_1, \ D_i^{(1)}$ is strongly homeomorphic with N_α , $K_i^{(1)}$ is an *n*-cell and $\sum_{j=1}^r \lambda[D_j] \subset \sum_{j=1}^{r_1} \lambda[D_i^{(1)}]$. There exists a homeomorphism, $H_{\psi_1}(\sum_{j=1}^{r_1} \lambda[D_i^{(1)}]) = \sum_{j=1}^{r_1} \lambda[K_i^{(1)}]$, such that $H_{\psi_1}(\lambda[D_i^{(1)}]) = \lambda[K_i^{(1)}]$, $j = 1, 2, \dots, r_1$, and $H_{\psi_1}(\lambda[D_i]) = H(\lambda[D_i])$, $j = 1, 2, \dots, r$.

Assign to each point p of \overline{N}_{α} the neighborhood N_{b_p} such that N_{b_p} is the neighborhood of G(p) (§5.1) of least subscript greater than 2 having the following properties: \overline{N}_{b_p} belongs to every neighborhood of T_1 which contains p; if N_{ξ} belongs to T_1 and $\overline{N}_{\xi} \not p$, then $\overline{N}_{b_p} \cdot \overline{N}_{\xi} = 0$; $N_{b_p} \not p D_{j^{(1)}}$ for all values of j. There exists a finite subset of the set of all such neighborhoods: $T_2 = \{N_{\phi_i}\}, j = 1, 2, \dots, h$, such that $\sum_{i=1}^{h} N_{\phi_i} \supset \overline{N}_{\alpha}$ and $N_{\phi_i} \not p N_{\phi_i}$, $s \neq t$.

 $T_2 = \left\{ N_{\phi_j} \right\}, j = 1, 2, \cdots, h, \text{ such that } \sum_{j=1}^h N_{\phi_j} \supset \overline{N}_\alpha \text{ and } N_{\phi_s} \updownarrow N_{\phi_t}, s \neq t.$ Let $D_\mu^{(1)}$ be any one of the sets $D_j^{(1)}$. Suppose that $N_{\phi_m} \cdot D_\mu^{(1)} \neq 0$. Then $N_{\phi_m} \cdot \overline{D}_\mu^{(1)}$ is an open set with respect to $\overline{D}_\mu^{(1)}$. Since $D_\mu^{(1)}$ is strongly homeomorphic with N_α , Lemma 8 is true if $D_\mu^{(1)}$ and the sets $N_{\phi_m} \cdot \overline{D}_\mu^{(1)}$ are substituted for N_α and the sets P_k respectively. Then $D_\mu^{(1)} = \sum_{i=1}^e D_\mu^{(1)}$, and the sets $D_\mu^{(1)}$ and $\lambda \left[D_\mu^{(1)}\right]$ have the properties and the relations among themselves ascribed to the corresponding sets in Lemma 8. Corresponding to $D_\mu^{(1)}$ is the set $K_\mu^{(1)}$. Then $\overline{K}_\mu^{(1)} = \sum_{i=1}^e \overline{K}_\mu^{(1)}$. $K_\mu^{(1)}$ is an n-cell and there exists a homeomorphism, $H_{\rho_1}(\sum_{i=1}^e \lambda \left[D_\mu^{(1)}\right]) = \sum_{i=1}^e \lambda \left[K_\mu^{(1)}\right]$, such that $H_{\rho_1}(\lambda \left[D_\mu^{(1)}\right]) = \lambda \left[K_\mu^{(1)}\right]$, $i=1,2,\cdots,e$, and $H_{\rho_1}(\lambda \left[D_\mu^{(1)}\right]) = \lambda \left[K_\mu^{(1)}\right]$. Let H_{ρ_2} denote the transformation $H_{\psi_1}H_{\rho_1}^{-1}$. Then by Corollary, Theorem P_1 there is a homeomorphism, $H_{\rho_2}(\overline{K}_\mu^{(1)}) = \overline{K}_\mu^{(1)}$, such that $H_{\rho_2}(\lambda \left[K_\mu^{(1)}\right])$. Let $H_{\rho_2}(\lambda \left[K_\mu^{(1)}\right])$. If H_δ is used to denote the transformation $H_{\rho_1}H_{\rho_1}$.

$$\begin{split} H_{\delta}\bigg(\sum_{i=1}^{e}\lambda\big[D_{\mu i}^{(1)}\big]\bigg) &= H_{\rho_{\delta}}H_{\rho_{1}}\bigg(\sum_{i=1}^{e}\lambda\big[D_{\mu i}^{(1)}\big]\bigg) = H_{\rho_{\delta}}\bigg(\sum_{i=1}^{e}\lambda\big[K_{\mu i}^{(1)}\big]\bigg) \\ &= \sum_{i=1}^{e}\lambda\big[K_{\mu i}^{(1,1)}\big], \\ H_{\delta}(\lambda\big[D_{\mu i}^{(1)}\big]) &= \lambda\big[K_{\mu i}^{(1,1)}\big], \\ H_{\delta}(\lambda\big[D_{\mu}^{(1)}\big]) &= H_{\rho_{\delta}}H_{\rho_{1}}(\lambda\big[D_{\mu}^{(1)}\big]) = H_{\rho_{\delta}}(\lambda\big[K_{\mu}^{(1)}\big]) = H_{\rho_{2}}(\lambda\big[K_{\mu}^{(1)}\big]) \\ &= H_{\psi}H_{-1}^{-1}(\lambda\big[K_{\mu}^{(1)}\big]) = H_{\psi}(\lambda\big[D_{\mu}^{(1)}\big]). \end{split}$$

Similar results can be obtained for any two corresponding sets $D_i^{(1)}$ and $K_i^{(1)}$.

By the process described above, we can obtain the following

$$\overline{N}_{\alpha} = \sum_{i=1}^{r_2} \overline{D_i^{(2)}}, \qquad \overline{K} = \sum_{i=1}^{r_2} \overline{K_i^{(2)}},$$

 $D_i^{(2)}$ is strongly homeomorphic with N_α , $K_i^{(2)}$ is an *n*-cell, and $d(K_i^{(2)}) < \epsilon_2$, $j=1,2,\cdots,r_2$. $\sum_{j=1}^{r_1} \lambda[D_j^{(1)}] \subset \sum_{j=1}^{r_2} \lambda[D_j^{(2)}]$ and $\sum_{j=1}^{r_1} \lambda[K_j^{(1)}] \subset \sum_{j=1}^{r_2} \lambda[K_j^{(2)}]$. There exists a homeomorphism, $H_{\psi_2}(\sum_{j=1}^{r_2} \lambda[D_j^{(2)}]) = \sum_{j=1}^{r_2} \lambda[K_j^{(2)}]$, such that $H_{\psi_{2}}(\lambda[D_{j}^{(2)}]) = \lambda[K_{j}^{(2)}] \text{ and } H_{\psi_{2}}(\sum_{j=1}^{r_{1}}\lambda[D_{j}^{(1)}]) = H_{\psi_{1}}(\sum_{j=1}^{r_{1}}\lambda[D_{j}^{(1)}]).$ Continuing the process, we can obtain the sets $F_{1} = \sum_{k=1}^{\infty} \sum_{j=1}^{r_{k}}\lambda[D_{j}^{(k)}]$

and $F_2 = \sum_{k=1}^{\infty} \sum_{j=1}^{r_k} \lambda [K_j^{(k)}]$, such that

$$\overline{N}_{\alpha} = \sum_{i=1}^{r_k} \overline{D_i^{(k)}}, \qquad \overline{K} = \sum_{i=1}^{r_k} \overline{K_i^{(k)}},$$

 $D_i^{(k)}$ is strongly homeomorphic with N_{α} , $K_i^{(k)}$ is an *n*-cell, $d(K_i^{(k)}) < \epsilon_k$, $\sum_{j=1}^{r_{k-1}} \lambda \left[D_{j}^{(k-1)} \right] \subset \sum_{j=1}^{r_{k}} \lambda \left[D_{j}^{(k)} \right], \ \sum_{j=1}^{r_{k-1}} \lambda \left[K_{j}^{(k-1)} \right] \subset \sum_{j=1}^{r_{k}} \lambda \left[K_{j}^{(k)} \right]$ and, for every value of k, there is a homeomorphism, $H_{\psi_k}(\sum_{j=1}^{r_k} \lambda[D_j^{(k)}]) = \sum_{j=1}^{r_k} \lambda[K_j^{(k)}]$, such that $H_{\psi_k}(\lambda[D_j^{(k)}]) = \lambda[K_j^{(k)}]$ and $H_{\psi_k}(\sum_{j=1}^{r_{k-1}} \lambda[D_j^{(k-1)}]) = H_{\psi_{k-1}}(\sum_{j=1}^{r_{k-1}} \lambda[D_j^{(k-1)}])$.

Corresponding to T_2 , the set of neighborhoods used in obtaining the sets $D_i^{(2)}$, there is a set of neighborhoods T_k employed in a similar manner to obtain the sets $D_i^{(k)}$. The neighborhoods of T_k are determined as follows: Assign to each point p of \overline{N}_{α} the neighborhood N_{c_p} such that N_{c_p} is the neighborhood of G(p) of least subscript greater than k having the following properties: \overline{N}_{c_p} belongs to every neighborhood of T_i , $j=1, 2, \cdots, k-1$, which contains p; if N_n belongs to T_i , $j=1, 2, \dots, k-1$, and $N_n \not p$, then $\overline{N}_{c_p} \cdot \overline{N}_n$ =0; $N_{c_n} \Rightarrow D_j^{(k-1)}$ for all values of j. There exists a finite subset of the set of all such neighborhoods: $T_k = \{N_{\kappa_i}\}, j = 1, 2, \dots, g$, such that $\sum_{j=1}^g N_{\kappa_i} \supset \overline{N}_{\alpha}$ and $N_{\kappa_a} \supset N_{\kappa_b}, a \neq b.$

We can now conclude without difficulty that, if p is a point of \overline{N}_{α} , there exists a sequence of neighborhoods $\{N_{\delta_i}\}, j=1, 2, \cdots$, such that $N_{\delta_i} \supset p$,

 $N_{\delta_a} \neq N_{\delta_b}$, $a \neq b$, N_{δ_j} belongs to T_{k_j} , $k_j < k_{j+1}$, and $N_{\delta_{j+1}} \subset N_{\delta_j}$. By Lemma 1, $\prod_{i=1}^{\infty} \overline{N}_{\delta_i} = p$.

Every neighborhood of T_k which contains a given point p of \overline{N}_{α} contains all the sets $D_j^{(k)}$ for which $\overline{D_j^{(k)}} \supset p$. If the sets $D_{\mu_k}^{(k)}$, $k=1, 2, \cdots$, are such that $D_{\mu_k}^{(k)} \subset D_{\mu_{k-1}}^{k-1}$, k>1, then $\prod_{k=1}^{\infty} \overline{D_{\mu_k}^{(k)}}$ contains a point p, since $\overline{D_{\mu_k}^{(k)}}$ is a compact set. Then, by means of the result stated in the preceding paragraph, we can infer that $\prod_{k=1}^{\infty} \overline{D_{\mu_k}^{(k)}} = p$.

Let p be a point of $\overline{N}_{\alpha} - F_1$ and $D_{\mu k}^{(k)}$, the set $D_j^{(k)}$ which contains p. It is evident that $p = \prod_{k=1}^{\infty} D_{\mu k}^{(k)} = \prod_{k=1}^{\infty} D_{\mu k}^{(k)}$. Let $K_{\mu k}^{(k)}$ be the set which corresponds to $D_{\mu k}^{(k)}$. $\prod_{k=1}^{\infty} \overline{K_{\mu k}^{(k)}}$ consists of one point p'. The point p' cannot belong to F_2 . For, if $F_2 \supset p'$, the point p' appears in F_2 for the first time in the set $\lambda [K_{\mu_m}^{(m)}]$, $m \ge 1$. Then $p' = \prod_{k=m}^{\infty} \lambda [K_{\mu_k}^{(k)}]$. Under the circumstances, however, $\prod_{k=m}^{\infty} \lambda [D_{\mu k}^{(k)}]$ would be non-vacuous. This is impossible, since $\prod_{k=m}^{\infty} \lambda [D_{\mu k}^{(k)}] = 0$. Then $\overline{K} - F_2 \supset p'$.

Make every point p of $\overline{N}_{\alpha}-F_1$ to correspond to the point p' of $\overline{K}-F_2$ obtained in the manner just described. The process used in obtaining the sets F_1 and F_2 establishes a (1, 1) correspondence between the points of F_1 and the points of F_2 . We now have a (1, 1) correspondence between the points of \overline{N}_{α} and the points of \overline{K} . This correspondence is continuous both ways. Then \overline{N}_{α} is homeomorphic with \overline{K} . Therefore Z^n , which is homeomorphic with \overline{N}_{α} is a closed n-cell and I^n is an n-cell.

6. Proof that the conditions in Theorem I' are necessary. The proof which follows is applicable when n > 1. The slight modifications necessary when n = 1 are obvious.

In euclidean *n*-space let K be the set of all points whose coordinates x_j satisfy the condition $0 < x_j < 1, j = 1, 2, \dots, n$. K is an *n*-cell and $\lambda[K]$ is an (n-1)-sphere. Let $N_k^{(9)}$ be the irrational number $(.99 \cdots 9)^{1/2}$ in which the symbol 9 occurs k times and $N_k^{(8)}$, the irrational number similarly defined in which the symbol 8 takes the place of 9. The neighborhoods N_i to be defined belong to certain sets L_i , $i = 1, 2, 3, \cdots$.

The neighborhoods belonging to the set L_1 are obtained as follows: Denote by e_1 the number $1-N_1^{(9)}$. Let h_1 be the smallest integer greater than $1/e_1$ and m_1 , the number $1/h_1$. Then $m_1 < e_1$. The (n-1)-dimensional planes $x_j = tm_1$ $(j = 1, 2, \cdots, n; t = 1, 2, \cdots, h_1 - 1)$ separate K into h_1^n sets K_{v_1} such that $\overline{K} = \sum_{v_1=1}^{h_1^n} \overline{K}_{v_1}$. Each set K_{v_1} is the interior of an (n-1)-dimensional cube whose edges are equal in length to m_1 . Denote by r_{v_1} the smallest positive integer such that $N_{v_1}^{(8)}/r_{v_1} < m_1/2$, and by g_{v_1} the number $N_{v_1}^{(8)}/r_{v_1}$. Let the point $(x_1^{v_1}, x_2^{v_1}, \cdots, x_n^{v_1})$ be the point of \overline{K}_{v_1} which is equidistant from the vertices of \overline{K}_{v_1} . Denote by M_{v_1} the set whose points have coordinates

 x_i which satisfy the condition $x_i^{y_1} + g_{y_1} - e_1 < x_i < x_i^{y_1} + g_{y_1} + e_1$. Then $\overline{K}_{y_1} \subset M_{y_1}$. The neighborhoods of L_1 are the sets $\overline{K} \cdot M_{y_1}$, $y_1 = 1, 2, \dots, h_1^n$.

The neighborhoods belonging to the set L_2 are obtained as follows: Let E_{21}^{n-1} be an (n-1)-dimensional plane containing an (n-1)-dimensional face of \overline{K} or of a set \overline{M}_{y_1} and E_{22}^{n-1} , an (n-1)-dimensional plane containing an (n-1)-dimensional face of a set \overline{M}_{y_1} such that $E_{21}^{n-1} \cdot E_{22}^{n-1} = 0$. Designate by δ_2 the lower bound of the set of numbers which give the distances between all such pairs of (n-1)-dimensional planes. Denote by e_2 the number $1-N_{q_2}^{(9)}$, where q_2 is the smallest integer such that $6e_2 < \delta_2$. Define the numbers h_2 , m_2 , m_2 , and m_2 by the method used in obtaining the corresponding numbers in the preceding paragraph and obtain the sets K_{y_2} and M_{y_2} , $y_2 = 1, 2, \cdots, h_2^n$, which correspond to the sets K_{y_1} and M_{y_1} . The neighborhoods which belong to L_2 are the sets $\overline{K} \cdot M_{y_2}$, $y_2 = 1, 2, \cdots, h_2^n$.

In general, the neighborhoods belonging to the set L_i are obtained as follows:

Let E_{i1}^{n-1} be an (n-1)-dimensional plane containing an (n-1)-dimensional face of \overline{K} or of a set \overline{M}_{v_j} , $j=1,\ 2,\cdots,\ i-1$, and E_{i2}^{n-1} , an (n-1)-dimensional plane containing an (n-1)-dimensional face of a set \overline{M}_{v_k} , $k=1,\ 2,\cdots,\ i-1$, such that $E_{i1}^{n-1}\cdot E_{i2}^{n-1}=0$. Denote by δ_i the lower bound of the set of numbers which give the distances between all such pairs of (n-1)-dimensional planes. Let e_i be the number $1-N_{q_i}^{(9)}$, where q_i is the smallest integer such that $6e_i<\delta_i$. Define the numbers h_i , m_i , r_{v_i} , and g_{v_i} by the method used in obtaining the corresponding numbers in the preceding paragraph and obtain the sets K_{v_i} and M_{v_i} . The neighborhoods belonging to L_i are the sets $\overline{K} \cdot M_{v_i}$, $v_i=1,\ 2,\cdots,\ h_i^n$.

If a is a given value of i, no (n-1)-dimensional face of one set \overline{M}_{ν_a} is in the same (n-1)-dimensional plane with an (n-1)-dimensional face of a second set \overline{M}_{ν_a} . No (n-1)-dimensional face of a set \overline{M}_{ν_b} is in the same (n-1)-dimensional plane with an (n-1)-dimensional face of a set \overline{M}_{ν_c} , $b \neq c$.

When \overline{K} and K are substituted for Z^n and I^n respectively in Theorem I', all of the conditions of the theorem are satisfied.

7. Proof of Theorem I. We can conclude from the result obtained in (5.9) that, if Z^{n-1} is a space such that I^{n-1} is an (n-1)-cell, Z^n is a closed n-cell and I^n is an n-cell. By Theorem I (4.4), Z^0 is a closed 0-cell and I^0 is a 0-cell. The proof by induction that the conditions in Theorem I are sufficient follows immediately. The proof that the conditions are necessary is found in §6.

Howard University, Washington, D. C.